Application of a microfluidic reactor for screening cancer prodrug activation using silica-immobilized nitrobenzene nitroreductase.
نویسندگان
چکیده
The nitroreductase-catalyzed conversion of a strong electron-withdrawing nitro group to the corresponding electron-donating hydroxylamine is useful in a variety of biotechnological applications. Activation of prodrugs for cancer treatments or antibiotic therapy are the most common applications. Here, we show that a bacterial nitrobenzene nitroreductase (NbzA) from Pseudomonas pseudoalcaligenes JS45 activates the dinitrobenzamide cancer prodrug CB1954 and the proantibiotic nitrofurazone. NbzA was purified by affinity chromatography and screened for substrate specificity with respect to prodrug activation. To facilitate screening of alternate potential prodrugs, polyethyleneimine-mediated silica formation was used to immobilize NbzA with high immobilization yields and high loading capacities. Greater than 80% of the NbzA was immobilized, and enzyme activity was significantly more stable than NbzA in solution. The resulting silica-encapsulated NbzA was packed into a microfluidic microreactor that proved suitable for continuous operation using nitrobenzene, CB1954, and the proantibiotic nitrofurazone. The flow-through system provides a rapid and reproducible screening method for determining the NbzA-catalyzed activation of prodrugs and proantibiotics.
منابع مشابه
Silica-immobilized enzymes for multi-step synthesis in microfluidic devices.
The combinatorial synthesis of 2-aminophenoxazin-3-one (APO) in a microfluidic device is reported. Individual microfluidic chips containing metallic zinc, silica-immobilized hydroxylaminobenzene mutase and silica-immobilized soybean peroxidase are connected in series to create a chemo-enzymatic system for synthesis. Zinc catalyzes the initial reduction of nitrobenzene to hydroxylaminobenzene wh...
متن کاملCoimmobilization of a redox enzyme and a cofactor regeneration system.
The coimmobilization of nitrobenzene nitroreductase and glucose-6-phosphate dehydrogenase in silica particles enables the continuous conversion of nitrobenzene to hydroxylaminobenzene with NADPH recycling.
متن کاملSilica-immobilized enzyme reactors; application to cholinesterase-inhibition studies.
A rapid and economical method is reported for the preparation of an immobilized enzyme reactor (IMER) using silica-encapsulated equine butyrylcholinesterase (BuChE) as a model system. Peptide-mediated silica formation was used to encapsulate BuChE, directly immobilizing the enzyme within a commercial pre-packed column. The silica/enzyme nanocomposites form and attach simultaneously to the metal...
متن کاملUtilization of Enzyme-Immobilized Mesoporous Silica Nanocontainers (IBN-4) in Prodrug-Activated Cancer Theranostics
To develop a carrier for use in enzyme prodrug therapy, Horseradish peroxidase (HRP) was immobilized onto mesoporous silica nanoparticles (IBN-4: Institute of Bioengineering and Nanotechnology), where the nanoparticle surfaces were functionalized with 3-aminopropyltrimethoxysilane and further conjugated with glutaraldehyde. Consequently, the enzymes could be stabilized in nanochannels through t...
متن کاملMesoporous silica-supported catalysts for metathesis: application to a circulating flow reactor.
Using click chemistry for linkage, a ruthenium-based metathesis catalyst was efficiently immobilized on nanoporous silica. The heterogenized catalyst exhibited good activity and recyclability for various substrates. An interesting application was demonstrated for a continuous process using a circulating flow reactor.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomacromolecules
دوره 7 9 شماره
صفحات -
تاریخ انتشار 2006